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EXECUTIVE SUMMARY 

The significance of the Poincare - Einstein procedure for clock synchronization is examined in 

the light of an aether - based treatment of space and time measurement, as developed by Ives. 

The analysis leads directly to the Lorentz transformations for inertial interframe 

measurements, and permits of a determination of the rate of a moving clock and the derivation 

of doppler formulae. 

The interframe transformations for the electromagnetic density and field functions are 

developed in considerable generality, and Lorentz-covariance of the Maxwell-Lorentz 

equations demonstrated. 

Given a self-contained source complex which moves as a whole, the measured values of the 

electromagnetic functions in a neighbourhood of a particular source element are shown to 

depend only upon the velocity of the complex, and to be independent of the frame of reference 

in which the measurements take place. As a consequence, the constitutive equations, when 

modified for motion within the aether frame, continue to hold in all inertial frames. 

The conventional relativistic treatment of Maxwell's equations and allied topics is criticised 

on the grounds that it is essentially asymmetrical and leads, inter alia, to the belief that only 

relative velocity is significant in electromagnetic interactions. 
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PREFACE 

Although Einstein's Special (or Restricted) Theory of Relativity was formulated nearly ninety 
years ago, it has never been accepted by the whole of the physics community, let alone the 
community at large; it has, indeed, been the subject of attack at regular intervals. This is 
deplored by the relativist, Paul Davies, who has written:1 

" the scale and ferocity of the attack on the theory of relativity indicates a deep-rooted 
cultural antipathy. Undoubtedly many feel resentful about their cherished intuition being 
upset. Dealing as it does with fundamental concepts such as space and time, relativity is 
bound to produce a hostile and sceptical public reaction. There is also an element of 
simple confusion that encourages the repeated resurrection of the same old 'paradoxes' 
and controversies with wearisome persistence By making thought experiments 
sufficiently complicated a wily anti-relativist can frequently bury an error amid a maze of 
observers, clocks and rockets whizzing in various directions Ultimately all these 
clever attempts to find a loophole in special relativity are doomed to failure on logical 
grounds." 

On the other hand, anti-relativists voice a similar complaint:2 

"    there  are  inherent difficulties  in  arguing  with  relativists.     Because  of the 
abstractedness, the lack of definition and elaboration of its terms and the ambiguous and 
inconsistent use of them, relativity has endowed itself with considerable conceptual 
elasticity Arguments invariably bog down because of difficulties in communication. 
Relativity always appears to be misunderstood by the critic Whenever a relativist 
refers to a 'standard concept' it is very unlikely that the concept has an agreed meaning or 
even a confluent meaning for all participants in a discussion." 

And again:3 

" Before a relativist's mathematical operations get under way, his challenger should 
insist on rigorous physical definitions of the mathematical symbols; moreover he should 
see to it that the meanings do not shift in the course of the discussion A watch may 
be kept for the relativist's use of a concept as definite which he has earlier denied as 
having a precise or general meaning. The relativist may be asked whether his procedure is 
generally accepted by relativists or only by some of them The challenger should not 

1 New Scientist, 7 August, 1980, p 463. 
2 N. Rudakov, "Fiction Stranger than Truth." The Author, Geelong, 1981. 
3 D. Turner and R. Hazelett, "The Einstein Myth and the Ives Papers" Pt. 2.  Devin-Adair 

Co. Old Greenwich, Connecticut, 1979. 
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be embarrassed by his own insistence in asking these plodding questions in the face of the 
relativist's customary facility in the manipulation of mathematics." 

One may well enquire how such a situation, having once arisen, could have persisted for so long. 
The simple answer is that Einsteinian relativity does violence to our intuitive concepts - in 
particular, to that of distant simultaneity - and in so doing places severe constraints upon the 
manner in which arguments involving space and time may be carried on. This is a factor which is 
not recognised by the non-relativist, who insists upon applying a commonsense approach to a 
subject which, in conventional exposition, does not lend itself to such treatment. 

Thus, in the celebrated exchange between Dingle and McCrea some thirty years ago4, when 
Dingle claimed to have discovered an internal inconsistency in the special theory, McCrea 
countered his assertion by stating that Dingle was in error because 'he deals with objects to which 
the theory denies a meaning .... about the first thing that relativity theory does is to deny any 
operational meaning to the notion of simultaneity at different places.' 
As would be expected, this pronouncement failed to inform Dingle and his fellow critics.5 

One should not anticipate an early end to the debate, given the long-standing arguments between 
relativists over the solution of such an apparently simple problem as the clock paradox, and in 
view of the cavalier disregard of their own rules which some relativists display in their published 
works. 

But there is a way out of this real (or apparent) impasse; it is no less than a return to pre- 
Einsteinian physics - to the relativity of Poincare and Lorentz. The case for this has been argued 
forcibly by Builder.6 

"The permissibility of retaining the concepts of absolute space, of absolute motion and of 
the ether, and the fact that we can assign to these concepts definite and clear meanings 
compatible with the restricted theory of relativity has striking pedagogical and heuristic 
advantages. 

The conceptual difficulties associated with the restricted theory all arise out of the denial 
that the absolute concepts are permissible and out of consequent attempts to avoid them in 
the presentation of the theory. It is frequently maintained that the theory has forced us to 
discard entirely the old-fashioned commonsense notions of time and space; but nothing 
comprehensible or definable has been offered in their place. Moreover, any questions as 
to what causes the relativity of simultaneity, the measured constancy of the velocity of 
light in all inertial reference systems or the reciprocity of relativistic variations of length, of 
mass and of clock rates are evaded by vague references to the principle of relativity, to the 
four-dimensional character of space-time, and so on. 

Nature; vol. 216, Oct.14, 1967; vol. 217, Jan. 6, 1968. 
Dingle's argument involved the assumption that separated 'synchronized' clocks would 
show the same reading at the same (common-sense) instant. 
G. Burniston-Brown, Inst. Phys. & Phys. Soc. Bulletin, 18 (1967) p. 73. This article 
brings Dingle's paradox into sharper focus. 
G. Builder, "Ether and Relativity", Aust. J. Phys. 11 (1958) pp. 279-297. 
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On the other hand, the presentation of the theory in terms of the absolute concepts 
(following generally the lines of development by Poincare and Lorentz) involves no 
conceptual difficulties. The relativity of simultaneity, the reciprocity of relativistic 
variations and the constancy of the measured velocity of light, then all appear simply as 
comprehensible effects of the motions relative to the ether of the bodies observed and of 
the measuring instruments used. 

 The heuristic value of this approach is also noteworthy.   It reduces many questions 
which would otherwise lead to discursive and inconclusive arguments to a form in which a 
simple and conclusive answer can be given. For example, the relative retardation of 
clocks predicted by the restricted theory becomes a simple and intelligible consequence of 
the motion of the clocks relative to the ether. 

It is worth remarking that the pedagogical and heuristic advantages of this approach 
depend only on the tenability of the ether hypothesis and on the admissibility of the 
absolute concepts, i.e. on their compatibility with the restricted theory and with the 
general body of physical knowledge. These advantages would remain even if there were 
also available an alternative and equally tenable set of hypotheses and concepts." 

What, then, is the framework within which we may carry out the program suggested above? 

Firstly, it is postulated that a frame of reference (aether) exists in which the speed of light is c in 
all directions. Clocks which are stationary in the aether and have been set by the Poincare- 
Einstein out-and-back light synchronization procedure will consequently show the same reading at 
a given instant7 

Secondly, three fundamental assumptions are made relating to motion with velocity w in the 
aether frame, viz. that 

/ 2/2 \V2 

(1) rods contract in the direction of motion by the factor [l-u /c ) 

(2) clocks are slowed by the factor (l - u2/c2) 

(3) the momentum of a particle of mass m takes the form m«/ (l - u2/c2) 

Rod contraction was first suggested by Fitzgerald in 1889 as a possible explanation of the null 
result of the Michelson-Morley experiment, on the assumption that the aether was not earth- 
convected; in 1900 Larmor pointed out that clock slowing would be a necessary accompaniment 
of rod contraction if the out-and-back speed of light were the same in different inertial frames of 
reference. These two effects, in combination, are sufficient to account for the null result of the 
Kennedy-Thorndike experiment of 1932 in which the Michelson-Morley experiment was repeated 
with unequal interferometer arms. 

,V2 

cf. Lorentz: "My notion of time is so definite that I clearly distinguish in my picture what 
is simultaneous and what is not." 



The slowing of 'atomic' clocks by the factor [l-u2/c2j    was experimentally confirmed by Ives 
and Stilwell in 19388; the momentum relationship has been the subject of experimental 
demonstration for high-speed electrons over a period of years9. 

Given assumptions (1) and (2) it is possible to determine the rate of a moving clock in any inertial 
frame, to develop the corresponding doppler formulae and to derive the Lorentz transformations. 
In addition, the analysis reveals that clocks in a non-aetherial inertial frame which have been 
synchronized by the Poincare - Einstein procedure will not, in general, display a common reading 
at any instant10. 
These matters are dealt with in Chapter 1 below. 

In Chapter 2 the Lorentz transformations are applied to the parameters of the electrical model 
which comprises statistically-regular configurations of singlets and of doublets and whirls in 
uniform translation in the aether frame, in order to determine the interframe transformations of the 
density functions p,J,P and M. The E and B transformations follow from the transformations 
for the retarded potentials, since E and B are defined in terms of them. The latter 
transformations, together with those for the density functions, are substituted in the Maxwell- 
Lorentz equations for a moving medium as developed in an earlier work11, and Lorentz- 
covariance of the equations demonstrated. 

Assumption (3) is then utilised to derive transformations for mechanical and electrical force 
between inertial frames, given that the Lorentz force formula holds within the aether frame. 

Whereas our primary concern in Chapter 2 has been the relationship between measurements 
carried out in two inertial frames upon a given source complex (having a particular absolute 
velocity), we proceed in Chapter 3 to investigate the manner in which the measured values of the 
source parameters change when a source complex, which moves as a whole, assumes different 
velocities within a given frame of reference (and thereby acquires different absolute velocities). In 
the latter case we are concerned with real, physical changes in source configuration rather than 
with accidents of measurement. The computed changes in the dimensions of the electrical 
complex and in the frequency of its cyclic component are, in fact, found to be in accord with the 
variations expressed in (1) and (2) above for material rods and clocks, provided that the system is 
subject to Lorentz forces alone (or their mechanical equivalents). 

It is further shown that for a given set of source elements which translate as a whole, the 
measured values of the density functions and of E and B will be equal at corresponding points in 
all inertial frames for the same measured value of velocity. This permits of the extrapolation to all 
inertial frames of the modified constitutive equations, as developed for a moving medium within 
the aether frame. 

10 

li 

In such experiments u is, ofcourse, velocity as measured (or calculated) in the earth 

frame. It will be shown subsequently that the factor (l - u2/c2)    carries over from the 
aether frame into all inertial frames of reference. 
For an historical review, see Miller: "Albert Einstein's Special Theory of Relativity" 
Sec. 12.4. Addison-Wesley, 1981. 
This resolves Dingle's paradox. 
"Field Analysis and Potential Theory" Pt. 2. (The initials F.A.P.T. will be used to denote 
this work in subsequent foot-notes.) 



XI 

Chapter 4 is a critique of the conventional approach to Maxwell's equations for a moving 
medium. It is claimed that the Minkowski treatment is intrinsically asymmetrical, and inferior to 
the Lorentz form in which medium velocity appears explicitly. Moreover, the ascription of whirl 
moment to a translating doublet, as required in the retrospective justification of a particular 
transformation, is clearly in error. 

[Postscript: Subsequent to the completion of the present work, an interesting paper by 
H. Erlichson12 has come to the attention of the writer. This contains an informative review of the 
history of the subject under discussion and contains an extensive set of references. Erlichson 
attributes the first appreciation of the physical nature of clock retardation to Einstein rather than 
Larmor; the concept was later adopted by Lorentz. 

Erlichson could, perhaps, have laid greater stress on the fundamental difference between clock 
retardation as envisaged by Einstein and as understood in the 'absolute' theory, and have given 
greater prominence to the conceptual difficulties of the special theory, as recorded by Builder.] 

R.S. Edgar 

"The Rod Contraction - Clock Retardation Ether Theory and the Special Theory of 
Relativity." Am. J. Phys. 41 (1973) pp. 1068-1077. 
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NOTATION 

As in Parts 1 & 2, 

(1) vector quantities are represented by a bar over the associated symbol. 

(2) Gaussian units are employed throughout. 

Equation numbering duplicates that in Parts 1 & 2 but cross references refer only to Part 3. 



CHAPTER 1 

AN AETHER-BASED TREATMENT OF SPACE AND TIME MEASUREMENT 

1.1 Poincare-Einstein Clock Synchronization and the Speed of Li2ht * 

We proceed in this section to show that if rods and clocks are subject to the 
Fitzgerald-Larmor space and time contractions when moving through the aether, the 
two-way speed of light will be measured as c in all inertial frames of reference, and in 
any non-aetherial inertial frame the Poincare-Einstein clock synchronization procedure 
will result in continuous epoch retardation in the direction of absolute motion. 

Suppose that a plane platform moves with velocity W with respect to the aether frame. 
Let W define the direction of the positive x axis and let the platform define the xy plane. 
(Fig. 1.1) 

*w 

A clock moves from a to b with uniform speed q relative to the platform, as measured by 
the clock itself in passing over platform graduations. Its speed relative to the platform, 
as measured in the aether frame, is Y. The transit time shown on the moving clock is 
r' while that shown on any clock stationary in the aether frame is x. 

1   The analysis in this section is based, in large part, upon that developed by Ives and employs the 
same symbols. 
H.E. Ives "The Measurement of the Velocity of Light by Signals Sent in One Direction." J. Opt. 
Soc. Am. 38 (1948) pp. 879-884. 
"Lorentz-Type Transformations as Derived from Performable Rod and Clock Operations." J. Opt. 
Soc. Am. 39 (1949) pp. 757-8 only. 
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The length ab is measured on the platform as R' and as R in the aether frame. The x, y 
components of R' are D', y, while those of R are D, y, (since there is no compression in 
the y direction). The angle made by ab with the positive x axis is measured as 0' on the 
platform and as 0 in the aether frame. 

Since the x dimensions of the platform and those of rulers employed on the platform 
contract equally when in motion, D' will represent the x component of ab when the 
platform is at rest. Hence, when the platform is in motion, 

D = D'(l-W2/c2) 
1/2 (1.1-1) 

and      R2 = D2 + y2 = R2\l-^ 

or        R=R'(l-W2cos20'/c2f2 

cos0'(l-W2/c2f/2 

Also    cos 0 = D/R = 
(l -W2 cos2 9'/c2) 

1/2 

(1.1-2) 

(1.1-3) 

The speed of the moving clock relative to the aether frame is 

{(Ycos 9 + W)2 + (Ysin 9)2}1/2 = (Y2 + W2+2WYcos 0)l/2 

hence 

r'=Hl — 
Y2 + W2+2WYcos9 

1/2 

(1.1-4) 

R    R'\     W2 

But    Y=- = —U- 
T     r' 

l1/2[ 
-cos2 07   11- 

Y2+W2+2WYcos9 

On squaring both sides, collecting terms, writing R'/r' = q and substituting for cos0 
from (1.1-3), we obtain the quadratic equation 

Hufr 
2f    W2 ^ 

l-^cos20' 
v     c j 

r 

■ + Y 
IWq1 W2 1/2 

c2j 
cos 9' 

W2 

1-—rcos20' 
v     c2 j 

M/2 

1- 
W2 

c2j 

W1 

-cos2 9' 
J 
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of which the solution is 

Y = 
q(l-W2/c2f(l-W2cos29'/c2) 

1/2 

\l/2 

1 + 
c2j 

qw    n + ^rcos<9' 

(1.1-5) 

Substitution of (1.1-5) in (1.1-4) then yields 

r{l-W2/c2f 
Y/2 

1 + - 
V     c-j 

qw 
+ ^COS0' 

cl 

(1.1-6) 

Since the elapsed time of the clock movement as measured in the aether frame is x, the 
corresponding elapsed time registered by a clock which remains fixed at the point a on 

the platform will be r(l-W2/c2)1 , so that when the moving clock arrives at b it will 

have fallen behind the clock at a by 

A =T(\-W
2
 IC

2
) 

1/2 r{\-W2lc2) 
1/2 

Y/2 

1 + - 
V     c-j 

qw 
+ ^COS0' 

c1 

whence A = r(l - W2 I c2) 
1/2 (l + q2/c2f  -l + qWcosO'/c2 

R' j or, from (1.1-6),       A=— \ 
q 

(\ + q2/c2)y2+qWcos6'/c7 

2 Y/2 

1 + - 
V     c-j 

qw 
-1 + ^-5-cos Ö' (1.1-7) 

We are now in a position to determine the measured speed of a particle which moves 
from a to b, when its transit time is taken to be its arrival time, as shown on the clock 
which has moved to b, minus its departure time as shown on the clock fixed at a. (The 
two clocks, when stationary, are, of course, supposed to run at the same rate and are set 
to the same time before one moves to b) 

If the transit time is / when measured by a clock fixed in the aether frame, the clocks at 

both a and b will change by t(\-W2/c2f during the movement of the particle. But 

since the epoch of the clock at b is A behind that at a, the apparent transit time as 
defined above is given by 

1/2 
t' = t(l-W2/c2)    -A 

or t = (t' + A)/(l-W2/c2) 
1/2 

(1.1-8) 
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If V is the speed of the particle relative to the platform as measured in the aether frame, 
we have 

1/2 
V_R    R\      W2zos2e'Y'    Ri(l-W

2cos20'/c2)V (l-W2/c2) 
1/2 

t t 

i.e. V = 

t'(\ + A/t') 

Q2{\-W2cos2 6'lc2)y2(\-W2lc2)112 

V/2 

1 + ^ 
qW 

c 

(1.1-9) 

where   Q2 = R'/t' = two-clock speed as measured on the platform. 

We now apply the above considerations to light transmission. Suppose that a light 
photon emitted from a is received at b after an elapsed time t as measured in the aether 
frame. If V is the speed of the photon relative to the platform, as measured in the aether 
frame, the appropriate vector relationship is shown in Fig. 1.2. 

Fig. 1.2 

Then   c2 = W2+ V2+2VWcos9 

On solving the quadratic for Fwe get 

V = -W cos 9 + (W2 cos2 6 + c2 - W2 f2 

Substitution from (1.1-3) then yields 

(l - W2 /c2f/2(c-Wcos 9') 

{\-W2cos29'lc2)1'2 

On combining (1.1-9) and (1.1-10) we find that 

(1.1-10) 

a 
f 2 V/2 

V       c   J 
-1 

(1.1-11) 

This is the speed of light as computed from platform measurements with two clocks. It 
is seen to be independent of the platform velocity relative to the aether frame but 
dependent upon the self-measured velocity of the moved clock. 
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It is of interest to consider what modifications of formulae may be required if particle 
movement is directed from b to a. 

Since the epoch of clock a is ahead ofthat at b, (1.1-8) is replaced by 

t = 
(\-W2/c2) 

V2 (l.l-8a) 

and (1.1-9) becomes 

V = 
Q2(l-W2 cos2 e'/c2f2(\-W2/c2) 

yi/2 

.0M 
f      2 V/2 

V    c ) 
■1+^-cosÖ' 

c 

(l.l-9a) 

If a photon is emitted from b and received at a the appropriate vector diagram is now 
that of Fig. 1.3. 

Fig. 13 

V ■ 

In this case   c2 = V2 + W2 - 2VW cos 0 

whence 

V = Wcos0 + (W2 cos2 0 + c2 -W2)112 

Substitution from (1.1-3) then yields 

(\-W2/c2)V2(c+W cos 0') 

[\-W2 cos2 0'/c2) 
1/2 (l.l-10a) 

and on combining (1.1 -9a) and (1.1. -1 Oa) we get 

l+: 
(          2> V2 

1^1 -1 
\     c J 

(1.1-lla) 

(1.1-11) and (1.1-1 la) differ by a sign in the denominator, hence the speed of light as 
measured on the platform, while being independent of the platform velocity relative to 
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the aether frame, is not the same in the directions ab and ba. Nevertheless, we may 
show that the two-way speed of light, as measured on the platform by a single clock, will 
always be c. Thus if a light photon leaves a at time t[ on the a clock, reaches b at time 
t'2 on the b clock and, after reflection at b, returns to a at time t'^ on the a clock, then 

t'2-t[=R'l 
c 

1--" 
q 

(   q*T   } 
■ 

and %-t'2 = R', 

1 + 
2^2 

c   J 
-1 

whence, by addition, 
t'3-t[ = 2R'lc 

thus yielding a mean speed of c over the two-way path. 

A considerable simplification is effected if we postulate q -> 0. Then (1.1-7) reduces to 

A = R'cos 0'W/c2, and, if the point a is identified with the origin of platform 
co-ordinates, 

A = Wx'jc1 
(1.1-12) 

Since the epoch slip now depends only upon x', the mobile clock may move in an 
arbitrary path between a and b. In a multiple-clock situation it is not necessary that all 
clocks move out from the origin; any one clock may proceed to its final position from the 
neighbourhood of another clock whose epoch it initially shares. The each-way speed of 
light between a and b now reduces to c, as may be shown by putting # -» 0 in (1.1-11) 
and (1.1-1 la). Furthermore, this will be the each-way speed as measured between any 
two points on the platform since the preceding analysis may be applied equally to these 
points, and the differential epoch slip between them has the appropriate value. 

In these circumstances we can set any fixed clock b relative to a fixed clock a by 
arranging b's reading to be the mean of the emission and reception times at a of a 
light-pulse reflected without delay at b. This eliminates the philosophical problem of 
distant clock setting by infinitely slow movement2, and is identical with the 
Poincare-Einstein procedure for 'synchronizing' spaced clocks. Clearly, it does not lead 
to true synchronization, but we will continue to employ the term to describe this type of 
operation. 

It is seen, then, that clocks to the right of the origin, i.e. in the direction of W, are 
retarded while those to the left are advanced, and those on the y axis share the origin 
epoch. Had the platform been moving towards the left, clocks to the left would have 
been delayed and those to the right advanced.  In the latter case it may be shown that if 

It follows from (1.1-7) that the same result obtains when clocks are moved rectilinearly from 
the origin with finite velocity, and advanced at the completion of the movement by 

1 + 
c'j 

1/2 

\ both r' and q being known. 
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a£ continues to make angles 6 and 0' with the positive x axis, W must be replaced by 
-^ in (1.1-5, 6, 7, 9, 9a, 10, 10a). 

So far, we have restricted considerations to a plane region (platform). We can cover 
exterior points as follows: 

let A(x[,y[,z[) and n(x'2,y'2,z'2) be points which are non-coplanar with the x axis. Let 

two planes be drawn, one to include the x axis and A, the other, the x axis and B. Light 
synchronization with a clock at the origin will give rise to a relative retardation of 
W(x'2 -x[)/c2 between clocks at B and A. Now generate a new platform by drawing a 

plane parallel to the x axis and including A and B. Choose an arbitrary origin on this 
platform and draw a new x axis through it parallel to the original.' Then the situation is 
the same as that discussed previously, hence the each-way speed of light between A and 
B will be measured as c. 

EXERCISES 

1.1 A particle moves relative to the platform of Fig 1.1 with velocity V as measured in 
the aether frame. Its velocity as measured by synchronized clocks is ü' upon the 
platform and w in the aether frame. 

Utilise (1.1-9) with q -» 0 to show that 

ux={K + w)/{\ + Wu'Jc2) u'x={ux-W)/(l-Wux/c2) 

Derive the relationship sin 6 = sin 0'/(l- W2 cos2 6'/c2)    and so show that 

uy=u'y(l~W2/c2)y2/{l+W*Jc2) Wy = uy(l-W
2/c2f/(l-WuJc2) 

Extend the results to three dimensions by resolving uy and u'y along normal axes. 

1.2 Use the results of the previous exercise to derive 

(c2-u2)(l-W2/c2) 
u'2 = c2 

(l-WuJc2) 

u = c then u' = c 
and so show that if ,        f        ,„    Tjr     . 

u<c then u' <c   (for W <c) 



1.2 

FIELD ANALYSIS AND POTENTIAL THEORY 

The Rate of a Moving Clock 

[Sec. 1.2 

It has been shown in Sec. 1.1 that a clock P which moves rectilinearly with constant 
self-measured speed from a to b on the platform shown in Fig. 1.1 will become retarded 
relative to a clock Q fixed at a by 

R' f       2 V/2 

\    c J 
r+- 

R'W cos 6' 
(1.2-1) 
(1.1-7) 

where the various symbols have been previously defined. 

The two-clock speed of P, say u', as determined by Q together with a fixed clock at b 
light-synchronized with Q, will, in virtue of the associated epoch slip, be given by 

u' = RI(T'-WR'cos 0'/c2) 

where T is the elapsed time registered by Q. 

(1.2-2) 

But from (1.1-6) 

T 
Nl/2 

1 + 
c2j 

qw 
+ -V cos 6' 

c 

since T' = T(\-W
2
/C

2
) 

V2 

hence q(r - WRcos 0'/c2) = R'(l +q2/c2)V2 

so that u' = q/(l+q2/c2f/2 

and q = u'/(\-u'2/c2)V2 

On substituting (2.1-4) in (2.1-1) we get 

(1.2-3) 

(1.2-4) 

Wcos0' 

or A =t'{l-(l-u'2/c2)V2} + Wx'/c2 (1.2-5) 

where /' is the two-clock time difference between the end points of the movement. 

Suppose, now, that P traces out a continuous path3 which may be treated as the sum of a 
series of infinitesimal rectilinear steps. Then the differential form of (1.2-5) will apply to 
each step and the total retardation of P relative to Q will be given by the associated 
integral. 

The path need not be planar 
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Now dA ={\-(\-u'2/c2)V2}dt' + Wdx'/c2 (1.2-6) 

and dt'^dT-Wdx'/c2 (1.2-7) 

hence dA = dT-(\-u'2/c2)V2dt' (1.2-8) 

Then if P traces out a closed curve on leaving Q, its mean rate relative to Q will be given 
by 

j (dT'-dA)/\ dT = J (l -W'2/c2)V2 df'/J dT 

But from (1.2-7) \dt' = \dT since ^' = 0 (1.2-9) 

Further, dt' = ds'/u' where ds' is the absolute value of an element of displacement, hence 

This is the general expression for the round-trip rate of a moving clock relative to one 
fixed on the platform. It is seen to depend only upon speed as measured by stationary 
synchronized clocks, and is independent of platform velocity relative to the aether. For 
the case in which u' is piecewise constant (1.2-10) reduces to 

l(dr-dA)/$dT' = {l-u'2/c2f2 (1.2-11) 

It follows that if two clocks P and R, initially set to zero , move with constant speeds u[ 
and u'2 in any paths from and back to a stationary clock Q in the same elapsed time 

J dT on Q, then clock P will be retarded relative to R by 

{(i-^f-fiVAf2}!^ (1.2.12) 

More generally, if clocks P and R, initially set to zero, move away from each other in any 
fashion and subsequently come together, then it follows from the integral form of (1.2-8) 
that P will be retarded relative to R by 

\{\-u'2lc2)Xl2ds'2KA{l-u[2lc2)V2ds[K (1.2-13) 

These expressions involve individual speeds as measured on the inertial platform; even in 
the case of collinear motion it is not possible to express the result in terms of relative 
speed unless u[ or u'2 = 0. 

The instantaneous rate of P relative to Q is given from (1.2-8) by 

(dT - dA )/dT = (l - u'2/c2f2 dt'/dT 
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whence, from (1.2-7), 

(dT'-dA)    (l-u'2/c2) 
yi 

dT (l+Wu'Jc2) 

[Sec. 1.2 

(1.2-14) 

This cannot remain constant during the course of the closed movement since u'x must 
change sign. We see, further, that the absolute speed W of the platform is involved. At 
first sight it might be supposed that W could be determined if the reading of P could be 
transmitted to an observer located at Q (or, what amounts to the same thing, if the 
observer could see P) and so permit of substitution in (1.2-14). However, this 
presupposes instantaneous transmission. 

Consider the simple case in which clocks P and Q are zeroed together at the origin of 
platform co-ordinates, and P then proceeds to move at constant speed u' along the 
positive x axis. When it reaches the point x' - x'0 it reverses its motion and ultimately 
arrives back at Q. Suppose that on the outward journey a stationary synchronized clock 
at x' = x[ reads /[ when P reaches this point, and on the return journey a stationary 
synchronized clock at x' = x'2 reads t'2 when P reaches it. Further, let the times of arrival 
of the P readings at the origin be T[ and T2 respectively, as read on Q. Then at x' = x[, 

P reads (l-u'2/c2)V2t[. Also x[ = c(T{-t[), whence T{=t[(l + u'/c). 

Hence, for outward movement, 

reading of P as observed at Q     (l - W /c J 

reading of Q (l + u'/c) 
(1.2-15) 

The same expression holds for the ratio of incremental readings. 

During the return movement P reads (l-«'2/c2)   t2 at x' = x'2 (the integral form of 

(1.2-8) holding throughout the movement). 

Also c\T2 -1'2) = x2 or T2 =t'2 + x'2/c 

Further, t2 = x'0/u' + (x'Q - x'2)/u' since J dt' = — J ds' 

Hence, for inward movement, 

reading of P as observed at Q (1 - "' /c ) 

reading of Q 
1 + 

c(2x'0-x'2) 

(1.2-16) 

(\-u'2/c2)V2dt2     (l-u'2/c2) 
The incremental form is — 

V2 

(dt'2+dx'2/c) (l-u'/c) (1.2-17) 



Sec 1.2]   AN AETHER-BASED TREATMENT OF SPACE AND TIME MEASUREMENT    11 

In a similar manner we may show that 

for outward movement 

reading of Q as observed at P _     (l - u'jc) 

reading of P (l-u'2/c 
1/2 

(1.2-18) 

for inward movement 

reading of Q as observed at P 

reading of P 

\2x0    x-z) 
(1.2-19) 

(i-«'7c2) 
1/2 

The incremental form is 
(l + u'/c) (1.2-20) 

It is clear that propagation delay has defeated efforts to deduce Wftom a comparison of 

clock readings. 

On the basis of the above relationships we may draw up the following table for u'jc = 0.8 

and x'0 = 5«'. 

distance of P 
from origin 

adjacent 
clock reading 

reading of P reading of Q 
on arrival at P 

time of arrival 
at Q of P's 

reading 

0 0 0 0 0 

u' 1 0.6 0.2 1.8 

2v! 2 1.2 0.4 3.6 

3 M' 3 1.8 0.6 5.4 

4 M' 4 2.4 0.8 7.2 

5 M' 5 3.0 1.0 9.0 

4M' 6 3.6 2.8 9.2 

3 M' 7 4.2 4.6 9.4 

2 M' 8 4.8 6.4 9.6 

M' 9 5.4 8.2 9.8 

0 10 6 10 10 

A little consideration will show that (1.2-15), (1.2-17) and (1.2-18),(1.2-20) must be 
closely connected with the doppler formulae for the cases: moving source, fixed receiver 

and fixed source, moving receiver. 

The relevant relationships are developed in greater generality in Sec. 1.4. 
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1.3 

FIELD ANALYSIS AND POTENTIAL THEORY 

Development of the Lorentz Transformations from the 
Fitzgerald-Larmor Contractions 

[Sec. 1.3 

It has been shown in Sec 1.1 that if rods and clocks are subject to the Fitzgerald-Larmor 
contractions when tied to a platform which moves with velocity W relative to the aether 
frame, then, for platform movement in the positive x direction, a clock which is 
light-synchronized with a master clock located at the origin of platform co-ordinates will 
be retarded in epoch relative to the master by Wx'/c2, where x',y', z' are the platform 
co-ordinates of the synchronized clock. 

If the master clock is set to zero when it coincides with the origin of co-ordinates of the 
aether frame (and other platform clocks are altered by the same amount), and if all 
aetherial clocks read zero at this time, then, when the aetherial clocks read t, the master 

clock will read t[\ - W2/c2)   , and the other platform clocks will read 

t' = t(l-W2/c2f -Wx'/. (1.3-1) 

O o' 

< x' > 

We see that if x and x' are the x 
co-ordinates of the point P (Fig 1.4) when 
measured in the aether frame and upon the 
platform at time / by the aetherial clocks, 
then because of the Fitzgerald contraction of 
the platform ruler, 

Wt -> 
< x- 

Fig. 1.4 

_> x'={x-Wt)l(\-W2lc2)V2 (1.3-2) 

On substituting (1.3-2) in (1.3-1) we obtain the clock reading f on the platform at P in 
terms of the aetherial clock reading at P, viz. 

t' = (t-Wx/c2)/{l-W2/c2f2 (1.3-3) 

Since there is no rod compression normal to the direction of motion, y' = y and z'= z. 

If, now, we replace W by v and write (l - v2/c2)      as ß , we obtain the standard form 

of the Lorentz transformations5 

The term 'platform' will be replaced by 'frame' from now on, and vJ will be employed for 
interframe speed. 
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x'= ß(x-vt) 

z' = z 

t'=ß(t-vx/c2) 

The Fitzgerald contraction is often misrepresented in relativist texts by being identified 
with the reduction in length of an x-orientated rod when measured in a frame in which it 
is in motion, as compared with its measured length in a frame in which it is stationary. 
Now if the rod were stationary in the aether frame S, the Fitzgerald contraction, per se, 
would increase its measured length in another frame Sf because of ruler contraction in 
S'. However, the requirement that end-position readings of the rod be taken at the 
'same' time as determined by local synchronized clocks is sufficient to override this 
effect and give rise to a length reduction. The same requirement is responsible for the 
reciprocal nature of x-orientated length measurements in S and S'. 

In the expression for /' both the Fitzgerald and Larmor contractions are involved, in 
addition to the epoch slip associated with clock synchronization, Because of these 
complications we find a reciprocal relationship for time dilatation between frames which 
would not accompany the Larmor contraction in isolation. 

Suppose now that measurements of a common event are carried out in three inertial 
frames of reference, viz. in Sl and S2 which move with constant velocities iv{ and iv2 

with respect to the aether frame S, and within the aether frame itself. Then if the 
conventional requirements for space and time zeroing are met, the transformations 
between Sx and S are given by 

(a) xx = Pl(x-vxt) where/^l-vfA2)"172 

(b) h = ßi(t-vlx/c2) 

and between S2 and S by 

(c) x2 = ß2(x-v2t) where/?2=(l-v2
2/c2)" 

(d) t2 = ß2(t-v2x/c2) 

From (a) and (b) we obtain the reciprocal relationships 

(e) x=ßl(xl + vltx) 

(f) t = ßl(tl + vlxl/c2) 

On substituting (e) and (f) in (c) we find that 
^2 = A^{x1(l-v1v2/c2)-(v2-v1V1} 

or 

■V2 
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 Xl-(V2-Vl)h/(l-vlv2/c2) 
V2 

{(l-v.V^Kl-v.Vc^/fl-v^/c2)2} 
Xl-{V2-Vl)tl/(l-VlV2/c2) 

=   {l-(v2-vl)7c2(1-v1v2/cf}'/2 

i.e. x2 = ßn(xx - vutx) where ßn = (l- vn
2/c2) 

and v12 is the speed of frame 2 as measured in frame 1. 

Similarly       t2 = ßn\h ~ vn x\lc2) 

Thus the Lorentz transformations hold not only between the aether frame S and other 
inertial frames Sx and S2 in relative motion along a common x axis, but also between Sx 

and ^ themselves. Correspondingly, the transformations are said to exhibit a group 
property. 

1.4 The Doppler Effect 

We will first develop the doppler formula within the aether frame, where the speed of 
propagation is c in all directions and synchronized clocks show the same time at a given 
instant. 

Corresponding to a source velocity w and a receiver velocity w, let the co-ordinates at 
time / be 

source: X0+uxt Y0+ut Z0+uzt (1.4-1) ox " o        y o        z 

(1.4-2) receiver: x
0
+wxt y0

+w
y
i zo+wzt 

A pulse leaving the source at time tx is received at time tl+rl/c, where 

^i2=ZK+^U+/-i/c)-X0-Vi}2 (1.4-3) 

If the next pulse leaves the source at time t2 it is received at t2 +r2/c.  Then if fs is the 
source frequency and fr is the received frequency 

fs - l/(t2 -1,)    and      fr = j/| t2 - tx + -c {r2 - rjj 
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But from (1.4-3) 

dr     v 
*o+Wx 

f    r^ 
t + - 

V    c) 
-X0-uxt 

1 dr 
wr -ur+—wr—- 
, x     x   c   x dtj 

or 
dt 

= 1/ 
1      öfr 

x     x    c   x dt) 

where / is the x direction cosine of the vector r directed from the source at the time of 
emission to the receiver at the time of reception, hence 

dt 
(\-wr/c) = wr-ur 

and f'-f^l + -c(l-Wr/c)\-f°(l-ur/c) 

(1.4-5) 

(1.4-6) 

where wr and ur are the resolved parts of w and u along r. 

This is the standard doppler formula for medium propagation. 

Suppose now that observations are carried out in an inertial frame S' which moves with 
velocity Iv relative to the aether frame. 

Since t' = ß{t- vx/c2) we have, at the receiver, At' = ßAt(\ - vwx/c2), hence 

/.' = /,/ß(\-vwjc2) (1.4-7) 

Similarly 

so that 

/;=y;Mi-Wc2) 

£ = £(\-vux/c2) Jl-wr/c)(\-vux/c2) 

/;    fs(]-vwjc2)    {l-ur/c)(\-vwx/c2) 

(1.4-8) 

(1.4-9) 

(1.4-9) may be expressed in terms of measured values in S' by means of transformations 
developed elsewhere6, involving the resolved part of velocity along a line joining a 
retarded source position to a point of reception. 

The appropriate transformations are 

(\-KJc) = {l'Ur/c)/ß2(l-vuJc2)(\-lv/c) 

(l-w',/c) = (\-wr/c)/ß2{l-vwx/c2){l-lv/c) 

where / is the x direction cosine of the above-mentioned line. 

Substitution of (1.4-10) in (1.4-9) yields 

(1.4-10) 

F.A.P.TPt. 2. Sec. 1.3 
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f.= f,^Z<dA (14-11) 
Jr~J'(l-*,/c) 

This is simply a primed form of (1.4-6). 
The result could have been anticipated since the measured speed of light is the same in all 
directions in S' and of equal value to that in the aether frame, so that the same analysis 
applies. It must, of course, be borne in mind that the values assigned to // and // are 
based on the readings of stationary synchronized clocks in S' to which the receiver and 
source are adjacent at any time. 

The frequency of the source when in motion in the aether frame is related to its 
frequency f0 when stationary by 

fs=f0(l-u2/c2f (1.4-12) 

Then from (1.4-8)        fs = f0 (l - u2 / c2f / ß (l - v ujc2) 

Now it may be shown that6 

(l-u'2/c2f2=(l-u2/c2f2/ß(l-vujc2) (1.4-13) 

hence /; = f0(\ - u'2 / c2f/2 (1.4-14) 

(1.4-14) is the primed form of (1.4-12), the 'rest' value of source frequency having the 
same measured value f0 in all frames of reference. 

V2(l-wr/c) (1.4-15) 

(1.4-6) and (1.4-11) may be expressed in terms of f0 as 

{l-ur/c) 

fr-fX^'IcT^A (L4-16) Jr
     J°y '     '      (l-tt^/c) 

For the particular case of a receiver stationary in S'7 

(l-u'2/c2)y2 (1-4-17) 
J r      Jo 

(l-u'r,/c) 

(1.4-17) is presented in texts on special relativity as the doppler formula. From the nature 
of its derivation in such texts, the components of the expression are necessarily evaluated 
in a frame of reference in which the receiver is stationary and in which, in consequence, 
the absolute velocity of the source is equal to its velocity relative to the receiver. This 
appears to have given rise to the mistaken impression that only relative velocity need be 
involved in the doppler formula. 
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If the line joining the retarded position of the source to a stationary receiver is normal to 
w, i.e. if the source is seen to be along a line normal to its path, u'r, = 0 and 

/;=/„(>-»'7c2) 
V2 

(1.4-18) 

This formula is said to express the transverse doppler effect, but this is clearly a 
misnomer. It was first experimentally verified by Ives and Stilwell in 1938. 

So far, all timing has been based on the readings of local, stationary, synchronized 
clocks. We may, however, express the result in the case of a moving receiver in 
somewhat different form by computing the received frequency by means of a clock 
carried with the receiver.   The associated time intervals are then reduced by the factor 

;2)V28 (\-w'2/c so that the received frequency is given from (1.4-16) by 

J r      Jo 

(l-^/c2)1/2(l-</c) 

(l-w"/c*f(l-S,/c) 

(1.4-19) 

This introduces a greater symmetry into the expression but at the expense of employing a 
stationary clock to compute f0, stationary synchronized clocks to compute u' and w' 
and a moving clock to compute f'r. In these circumstances it is easily shown that f'rjf0 

has the same value when the source approaches a stationary receiver or the receiver 
approaches a stationary source, at a given speed. But it follows from (1.4-16) and 
(1.4-19) that, in general, the frequency ratio cannot be expressed in terms of the relative 
velocity of source and receiver. 

EXERCISE 

1.3 A turntable of radius Rx rotates with angular velocity co, as measured by a 
stationary clock at the centre. A source is located on the table at a distance R^ from the 
centre and a receiver is located at random on the periphery. If the source frequency is 
measured as f0 by a co-moving clock, show that the received frequency is given to at 

least a second order in v/c by 

(a) J r      Jo 
[X-Rlco'lc2)1' when measured by a clock which moves with the 

receiver. 

(b) fr=f0(l-R2co2/c2) 
i/2 when measured by stationary clocks adjacent to 

the periphery. 

This follows from equation (1.2-8). 
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CHAPTER 2 

INTERFRAME TRANSFORMATIONS IN ELECTRODYNAMICS 

In this chapter we examine the manner in which the values of various electrical and mechanical 
point functions change when measurements of a given source complex are transferred from the 
aether frame S to a frame S' which moves with velocity iv relative to S. 

In virtue of the group property exhibited by these functions (Appendix 2), the same 
transformation formulae must hold between all inertial frames in relative motion along a common 
xaxis. 

It is shown by direct transformation of the individual components that the Maxwell-Lorentz 
equations for a moving medium maintain the same (Lorentz-covariant) form in all inertial frames 
of reference. 

2.1 Transformation of the Density Functions o, J. P and M 

(1) Transformation of charee and current density 

It follows directly from the population density transformations1 for a set of sources 
translating with velocity w in S, that in S' 

p' = pß(\-vwjc2) = ß(p-vJx/c2) 

J'x = PK = Pß(\-VWxlc2){Wx ~V)/(l- VWx/c2) = Pß(Wx ~V) = ß(jx - P») 

J'y= p\v'y = pß(\-vwjc2)wy/ß(l-vwjc2)= pwy=Jy 

Similarly J'z = Jz 

See F APT. Pt.2. Sec. 1.7. Although the Lorentz transformations were employed in 
Pt.2. in a mapping capacity to generate a secondary source system from a given primary 
source, the associated transformations apply equally to the case of a single source system 
when viewed from different reference frames. 
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In summary 

J'x = ß{jx-pv) J'y = Jy J'z=Jz p' = ß(p-vjjc2)(2.\-l) 

whence 

Jx = ß{j'x + p'v)       Jy=J'y JZ=J'Z p=ß{p' + vJ'x/c2)(2.l-2) 

(2) Transformation of doublet polarisation density P 

Suppose that the doublet complex translates with velocity w in S.  Then the dimensions 
of an individual doublet will transform as follows1: 

ß[\-vux/c ) c   (\-vux/c2j 

{x2-Xl) 
Z'-Z'-Z -z+^ 

C2   (l-V„Jc2) 

whence 

Px my Pr 

^(l-vM>
2)   '  ^-^     c2(l-v«x/ca)' 

raz Px 
(2.1-3) 

P'z=Pz+- 
c2 (l-vM;c/c2) 

But AT' = AT/ ß[\-vux/c2) where Ar is an element of volume which translates with 
velocity ü in S, hence 

and 

P; = PX ; P; = ß(l-vux/c2)Py + ßvuyPx/c2 ■ 

P; = ß(\-vuJc2)Pz + ß>uzPx/c2 

PX=PX   ■   Py = ß{l + vu'x/c2)p;-ßVuyPx/c2   ■ 

Pz = ß(l + vu'x/c2)^-ßvu'zPx/c2 

(2.1-4) 

(2.1-5) 

where u'x = \ux - v)/(l -vux/c2j = x component of velocity in 5'. 
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(3) Transformation of whirl moment density M 

Suppose that the whirl complex translates with velocity « in S. 

Let a circulating charge arrive at a point P on an individual whirl at a time t in S, the 
corresponding co-ordinates being X+uxt, Y+uyt, Z+uzt.  In S' the time at P is read 

as ß(t-v(x+uxt)/c
2).   If the following charge arrives at P at time t + At in S, the 

time, as read in 5", is ß{t + At-v(x + ux(t + At))/c2} so that in S' the interval between 

successive arrivals is given by At'= Atß(l-vux/c2), whence the circulating current 

relationship is 

I' = l/ß(\-vux/c2) (2.1-6) 

The whirl is supposed neutral in S2. 

Charges which are fixed within the whirl when viewed in S will remain fixed when 
viewed in S', so that the total negative (stationary) charge between any two points of the 
whirl will appear equal in S and S'. 

Suppose that a positive charge qx arrives at P 
and a positive charge q2 arrives at Q at the time 
t in S. (Fig 2.1) Then as measured in S', qx 

arrives at P at the time ß(t -v(x+uxt)/c
2), 

say t', while q2 arrives at Q at the time 

ß(t-v(x+uxt + Ax)/c2), i.e. ßvAx/c2 earlier 

than qx arrives at P. (Ax is the x component of 
Fig. 2.1 PQ as measured in S). 

Then by the time t', an additional charge ßvAxI'/c2 will have passed Q in the direction 
of P, so that the total net charge between P and Q when measured at the common time 

/' mS' mllbQ ßvAxI'/c2. 

Now Ax' = Ax/ß(\-vux/c2) and /' = //ß(\-vux/c2) hence AxI' = Ax'I and 

X' = ßvAx'l/c2As' where X' is the net line density of charge between P and Q as 
measured in S' at the arbitrary time /', and As' is the length PQ as measured in S'. 

Then 
-ßvIi-As' (2.1-7) 

c 

where As' has the direction of current flow. 

X' = - 
c 

2     As' 

If the whirl should exhibit polarisation in S resulting from a variable net line density of 
charge with zero total charge, it is easily shown that the transformation of this 
component of polarisation will take the same form as that developed for the discrete 
doublet distribution, and should therefore be included with it in (2.1-4). This should not 
be confused with whirl polarisation which is observed in S' but not in S. 
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The total net charge , as measured in S', is easily shown to be zero, hence the 
polarisation associated with the whirl in S' is given by 

' = j>s'A'ds' = -^-^ri-ds' (2.1-8) 

where s' is the position vector of an element of the contour relative to an arbitrary 
origin. 

It may be shown3 that 

Ps'i- ds' = ixS' (2.1-9) 

where S' is the vector area of the whirl as measured in S'. 

Then 

? = =¥(!**■) (2.1-10) 

It is shown in Appendix 1 that 

S' = i 
v c 

(\-vux/c2) 
(uySy + uzSz) (+j -+k 

ß(\-vujc2)      ß(\-vujc2) 
(2.1-11) 

whence, from (2.1-10), 

P* = 0     P\ 
m. 

P'z 
m„ 

c{l-vujc2)     Fz~   c(l-vuJc2) 

and 

(2.1-12) 

P'=0        P!, = ß-Mz        P'^-ß-M y      c c y 

Since m' = I'S'/c, we have from (2.1-6) and (2.1-11) 

m' = 

nry = 

cß(\-vux/c2) 

ISy 

cß2(l-vux/c2f 

x~(l-vujc2) 
(uySy+uzSz) 

IS, 

cß2(\-vujc2f 

(2.1-13) 

(2.1-14) 

F.A.P.T. Pt. 2. Sec. 1.5b 
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whence 
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v/c 
K = Mx-j: TTj {\-vuJc ) 

M 

[uyMy+uzMzj 

""^ ß{l-y'.JS) 
M: 

M. 

ß{\-vujc2) 

(2.1-15) 

and 

v/c2 v/c 

(l + vu'Jc ) 

M\ 

(u>yMy+uzM'z) 

My    ß(l + vu'Jc2) 

M'z 
Mz~ ß{l + vu'Jc2) 

(2.1-16) 

(4) Overall polarisation transformation 

The total polarisation as measured in S' derives in part from discrete doublet polarisation 
in S and possible whirl polarisation in S; it is given by (2.1-4). In addition, there is the 
component of whirl polarisation which appears in S' but not in S, viz. (2.1-13). By 
addition, we have 

P'X=PX 

P; = ß(l~vux/c2)Py + ßvuyPx/c2 +ßvMz/c )    (2.1-17) 

Pz- = ß(l-vux/c2)Pz + ßwzPjc2-ßvMy/c 

On combining (2.1-17) with (2.1-15) we obtain the inverse relationships 

PX=PX 

Py = ß(\ + vu'Jc2)Py-ßvu'yPx/c2-ßvM'z/c }    (2.1-18) 

Pz = ß (l + vu'x /c
2 )P; - ßvu'zPx je

2 + ßvM'y je 

EXERCISE 

2.1 Extend the analysis of Sec. 2.1 to cover the case in which P and M are 
time-dependent. Show that if whirl current has the same value at all points of the 
contour when measured at a given time in 5", it will vary around the periphery when 
measured at a given time in S', but that the same transformation formulae will hold 

provided that the whirl moment W is defined as Lim—ps'xPds', where s' is the v i-->o 2c 
position vector of an element of the contour relative to a point about which the contour 
shrinks. 
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2.2 Transformation of 6. A, E and B4 

Let O (x0 y0 z0) be a point of evaluation of the retarded potentials (j> and A in the 

aether frame S at time t0, and let Q \xr yx z{) be the appropriately-retarded position of a 
source element at time tv 

ThenifOQ = JR 

Ä = c(/0-/1) 

If the corresponding space and time co-ordinates of O and Q when measured in S' are 
x'Q y'0 z'Q t'0 and x[ y[ z[ t[, and OQ = R', then 

R' = c(t'0-t[) 

since the measured speed of propagation in S' is c. 

Further 

x'0-x[ = ß(x0-xl-v(t0-tl)) 

y'o-y'i=yo-yi 
z0-zx- Z0— zl 

t'Q-t[^ß{t0-tx-v{x(i-x^lc1) 

If/, m, n and /', m\ ri are the direction cosines of QO when measured in S and S' 

R' = c(t'0 -/;) - ßc{tQ -/, -v(x0 -x,)/c2) = ßR(l-lv/c) (2.2-1) 

Also 
W = (^-x;) = ^(x0-x1-v(/0-/1)) = ySR(/-v/c) 

hence 
/' = (/-v/c)/(l-/v/c) (2.2-2) 

Similarly, we find that 
m' = m/ß(l-lv/c) n' = n/ß(l-lv/c) (2.2-3) 

Let the source strength at Q be q. Then if w and w' represent source velocity, as 
measured in S and S', the corresponding microscopic retarded potentials at O will be 
given by 

The analysis in this section is, in large part, formally identical with that developed in 
F.A.P.T. Pt.2, Sec. 1.3, but the physical context is different. Here we are concerned 
with measurements carried out in two frames of reference, S and S', upon a common set 
of source elements; in Pt. 2 we were concerned with measurements conducted at 
conjugate points upon two different source systems, designated S and S', within a 
common frame of reference. 
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^ = -rA—Y        f=   i *   ,\ (22"4) 9
    R(\-uR/c) *     R'{l-u'R,/c) 

j_ <P* J,_ <& (2.2-5) 
c/?(l-i/*/c) c/?'(l-«^/c) 

Now uR = lux+muy+nuz    and    w# = /'< + m'u'y + riu'z (2.2-6) 

whence we find that 

{l-uR,/c) = {\-uR/c)/ß2(l-lv/c)(l-vuJc2) (2.2-7) 

Then                                            4'=ß(t-vAx/c) (2.2-8) 

4 = y9(4-v^/c)     A'y = Ay A'Z = AZ                      (2.2-9) 

and                                            ^ßif + vA'Jc) (2.2-10) 

4 = /?(4+v^'/c)     ^ = 4 4 = 4                      (2.2-11) 

These microscopic relationships, which have been developed for a single source, must 
continue to hold, by superposition, for any combination of sources, since the 
relationships are linear, and consequently apply to singlet, doublet and whirl 
configurations moving in any manner. 

Maxwell's equations for material media are written in terms of macroscopic quantities5. 
In particular, the macroscopic E and B fields continue to be defined by 

\dA - - (2.2-11) 
E = -grad(f>-—— and B-curl A 

but (j) and A are now macroscopic potentials. 

For present purposes the macroscopic potential at a point within a source complex may 
be defined to be the microscopic potential at that point of all source elements outside a 
small spheroidal surface centred upon that point, the dimensions of the spheroid being 
sufficiently great to ensure that the potential at the centre varies smoothly when the 
surface is translated. It is clear that the greater the statistical regularity of the fine 
structure of the complex, the smaller the excluding surface may be made. It is 
conventionally supposed that, while satisfying the above condition, the surface may be so 
reduced in size that further reduction does not significantly alter the potential at the 
centre. It follows that the relationships between <j> and <j>', and A and A' are the same 
as those for the microscopic potentials, since the same sources are involved in each frame 
of reference. 

The relationships between macroscopic and microscopic quantities are discussed in detail 
inF.AP.T. Pt.l. Sees. 5.17/18 
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The relationships between the macroscopic forms of E and E' and of B and B' are 
consequently identical with their microscopic counterparts. The relevant analysis has 
been carried out elsewhere6, although in a different context (footnote 4), with the 
following results: 

E'=E, 

B'=B, 

E'=ß 
V y    c    j 

B'=ß\Bv+-Ez 

E'z = ß\Ez+-Byj 

B'z = ß 
r       v     ^ 

V        c   y J 

(2.2-12) 

E„ = El 

BX=B'X 

ß 

B,. 

f        v    ^ 
E'y+-B'z 

v y   c    j 
f V       ^ 

V y   c    j 

Ez = ß\E'z--B^ 

Bz = ß B'z +-E'y 
v       c   y j 

(2.2-13) 

2.3 Transformation of the Maxwell-Lorentz Equations for Moving Media 

Maxwell's equations for a medium (doublet/whirl complex) at rest in the aether frame7 

have been extended in an earlier analysis8 to cover the case of uniform motion. The 
modified equations take the Lorentzian form 

div E = 47T( p - div p) 

curl E =  
c dt 

(2.3-1) 

(2.3-2) 

div B = 0 (2.3-3) 

-    An -    1 dE    An d~P —   An       ,-   _, 
curlB = —J + ——+ — + AncurlM+—curl(Pxu) (2.3-4) 

c        c dt      c   at c 

where u is the velocity of the complex in the aether frame9 

F.A.P.T. Pt. 2. Sec. 1.4. 
For a detailed development see F.A.P.T. Pt. 1, Ch. 5. 
F.A.P.T. Pt. 2. The treatment employs the Lorentz transformations, but in a mapping 
capacity only, and is consequently independent of the 'relativistic' considerations of 
previous sections. 
For analytical reasons the x axis of co-ordinates was chosen to coincide with the 
direction of doublet/whirl movement in the development of the above equations. 
However, the latter are seen to be invariant with respect to choice of axes and will 
therefore hold for an arbitrary direction of w within a set of axes so chosen that S' 
moves with velocity iv relative to S. 
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The values to be assigned to P and M are those obtaining during the movement10. 

We are now in a position to carry out the transformations of (2.3-1) to (2.3-4) between 
the aether frame S and the inertial frame S', by making use of the transformations 
developed in Sec. 2.1 for p,J,P and M and in Sec. 2.2 for E and B. These are 
repeated below for convenience. 

The algebraic working involved in the transformations is extremely tedious and 
intermediate steps have, for the most part, been omitted. 

Jx = ß(j'x + p'v)     Jy=J'y      JZ=J'Z      P=ß(p' + vJ'Jc2)      (2.3-5) 

P =F J X X 

Pz = ß{\ + vuxjc2)P'z - ßvu'zP'Jc2 + ßvM'y/c 

(2.3-6) 

v/c 

[l + vu'Jc ) 

M'y 

My~ ß{\ + vu'Jc2) 

(u'yMy+u'zM'z) 

M'z 
K~ ß(l + vu'Jc2) 

)       (2.3-7) 

Hl    V          1-Sy. 

Bx=B'x 

Ev = ß E' +-BL Ez = ß E'z—B'y 
V        c   y j 

Bv = ß v y   c    j 
Bz = ß\B'z+-E'y 

(2.3-8) 

(2.3-9) 

The appropriate transformations for the derivatives are 

d__     \_d_    v__d\     _£? d_      d_ d_ 

Jx=' ^Y^'c2 dt'\     dy~ dy'     dz~dz 
_     i.= o\±-_vl\ (2.3-10) 
'     dt    H\dV      dx'\ 

On substituting (2.3-8), (2.3-9) and (2.3-10) in the x component of (2.3-2) we find that 

(curl'E')  --div'B' = --^f (2.3-11) v 'x    c c dt' 

10 The variation of P and M which derives from movement is discussed in CH.3. Such 
variation is irrelevant to present considerations. 
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and from (2.3-3) 

div'B' —=-—^-—(curl'E')  = 0 
c2 dt'     cy 'x 

[Sec. 2.3 

(2.3-12) 

On combining (2.3-11) and (2.3-12) we get 

(curl'E')  = — 
\dB' 

c dt' 

and 

(2.3-13) 

div'B' = 0 (2.3-14) 

Substitution of (2.3-8), (2.3-9) and (2.3-10) in the y and z components of (2.3-2) yields 

[curl'E') 
\dB'y 

c dt' 
and (curl'E')  =- z- v /z       c dt' 

(2.3-15) 

On transforming (2.3-1) in accordance with (2.3-5), (2.3-6), (2.3-8) and (2.3-10)   we 
find that 

div'E+-(curl'B') 
cv 'x 

v f An T     \dE'    An dP'r 

c[ c    x    c dt'      c   dt 

+An(p'-div'P') 

.^-.\     An 
f + An(curl'M')x +—(curl'(P' x ü')) 

and on transforming the x component of (2.3-4) via (2.3-5/9) we obtain 

(curl'B')=—J'x+-^ + ^^ + An(curl'M')  +—(curl'{P'xü')) x     c    x    c dt'      c   dt' v 'x     c v       v "* 

{div'E'-An{p'-div'P')} 

Then on combining (2.3-16) and (2.3-17) we find that 

{div'E' - An{ p' - div'P')}/' ß 2 = 0 

hence 

and 

div'E'= An(p'-div'P') 

An w     1 dE'    An dPl 
(curl'B')  =—J'x+—T

JL
 +——- + An(curl'M')  +—(curl'(P'xü')) (2.3-19) v 'x      c    x    c dt'       c   dt' v 'x      c.  v        v "x        v J 

(2.3-16) 

>(2.3-17) 

(2.3-18) 
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In like manner, transformation of the y and z components of (2.3-4) give rise to primed 
versions of identical form. 

Then 

curl'B' = ^J'+-—+——+^currÄi'+^CurliP'xü')   (2-3-20) 
c        c df     c   of c 

It follows from (2.3-13/14/15/18/20) that the Maxwell-Lorentz equations for a medium 
in motion take the same form in all inertial frames under a Lorentz transformation, i.e. 
they are Lorentz-covariant. 

Before proceeding to Sec. 2.4 it is of interest to review the procedures which have 
brought us to the present position. 

Maxwell's equations for a medium at rest were developed in "Field Analysis and 
Potential Theory, Part 1" as a consequence of an 'electronic' model. This comprised 
statistically-regular configurations of singlets, doublets and whirls, the doublet and whirl 
centres being at rest in a frame of reference in which the speed of propagation, or 
retardation constant, was c in all directions (aether). The density functions 
p,J,P and M and the macroscopic retarded potentials <f> and A were defined in terms 
of the geometry and kinematics of the model, while E and B were expressed in terms of 
(f> and A. 

In Part 2 the Lorentz transformations were employed in a mapping capacity to extend 
Maxwell's equations to the case of a medium in uniform translation in the aether frame. 

In Part 3 use has been made of the Lorentz transformations tojnvestigate the manner in 
which the measured values of the density functions and E and B change when viewed in 
a non-aetherial inertial frame, and to demonstrate the Lorentz-covariance of the 
Maxwell-Lorentz equations for a moving medium. 

Nowhere in the above developments have experimental results of an electrical nature 
been incorporated, and to this extent it can be claimed that Maxwell's equations, as 
presented here, relate to mathematics rather than physics. In particular, no force law has 
been assumed for charge interaction; correspondingly, it has not been required that the 
source systems under consideration should comprise physically-viable configurations. As 
has been pointed out in the preface to Part 1, the physical aspects are introduced by way 
of the Lorentz force formula and through experimentally-determined parameters in the 
constitutive equations. 

Electrokinetic considerations appear, for the first time, in the following section. 
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2.4 

FIELD ANALYSIS AND POTENTIAL THEORY 

Transformation of Electrical and Mechanical Force 

[Sec. 2.4 

We suppose that within the aether frame S, the momentum of a particle of velocity « 
takes the form 

P = 
mu 

(l-u2/c>) 
V2 

(2.4-1) 

where m is the mass of the particle. 

This is the third fundamental assumption that has been made. The other two - the 
Fitzgerald-Larmor length and time modifications resulting from motion through the 
aether - have provided the bases of the foregoing 'relativistic' treatment of kinematics; 
the momentum formula permits of the corresponding development of kinetics. 

Then on the assumption that the Lorentz force formula holds in S, we now proceed to 
show that it will hold in another inertial frame S' only if momentum in that frame is 
ascribed the value 

P' = 
mu 

(l-u'2/c2) 
1/2 

(2.4-2) 

where «'is the velocity in S'u. 

Consider first the y component of the force which acts upon a charge q of mass m 
moving with velocity w in the aether frame. We can equate the y component of the 
Lorentz force with the corresponding rate of change of mechanical momentum, 

i.e. 

q{Ey+±(«xB)y} = 
mu. 

dt (\-u2/c2) 
1/2 

(2.4-3) 

The left hand side of (2.4-3) may be expressed in terms of the values of E' and B' which 
would be measured at q in the frame S' which moves with velocity Jv in S. 

This becomes 

? ß E'+-B: + 
ß{\ + vu'Jc2)    (\ + vu'Jc2) 

KKIc C        f v 
ß\B'z+-E' 

z ' c"yj 

which reduces to 

ß(\ + vu'Jc2) 
E' + -(ü'xB') (2.4-4) 

The transformation formula for momentum is commonly derived by the evaluation, in 
two inertial frames, of the linear momenta of lossless colliding particles, together with 
the assumption that momentum is conserved in each frame. Given this, the following 
analysis demonstrates that if the Lorentz force formula holds in one inertial frame, it 
holds in all such frames. 
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Since 
dt'= ßdt(\-vujc2) 

and (l-«yc2f=(l-*2/c*f/ß(\ + vü'x/c*) 

the right hand side of (2.4-3) may be expressed as 

ßb-™*lc2)-jT,- 
mu\ mu\ 

^'(i-M'Vc2)1/2" /KI+K/C'KM2/'2)1' 

whence from (2.4-4) and (2.4-6) 

f        i,      -x\     d        rmi 

(i-»'7c2)' 

A similar analysis obtains for the z component. 

For the x component in S 

>{EX+±(«*B)X} = 
mur 

dt {l-u2/c2) 
1/2 

The left hand side may be expressed as 

?1 
«'y{B'z+-c

E'y)   u{B'y-^ 
Ex+ c(l + vu'x/c2)~ c(\+vu'Jc2) 

which reduces to 

(i+v«;/c ^^'^V*''*' 

7 ^-rTr\E'+-(ü'xB') +^ü'\E'+-(ü'XB') 
(l + vux/c2){  x   c x   c2     V       cv 

E'x+-(ü'xB') 

V c 
K\E'y + ^{ü'xB')yyu'z[E'z+^(ü'xB')zj 

(\ + vu'x/c2) 

On applying (2.4-5) to the right hand side of (2.4-8) we get 
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(2.4-5) 

(2.4-6) 

(2.4-7) 

(2.4-8) 

(2.4-9) 
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(\ + vu'Jc2) 

d        mn' d mv 

<*'(l-tf*/c2f    dt'^/sf 
(2.4-10) 

The second term within the brackets is equal to 
mv u' du' 

It is easily shown by expansion that 

I«; du' 1 d mu'x 

Mh-S/SY* """ dt' U.*lj\* (i-"'2A2) 
mu 

(1-tfVc1)' 

hence (2.4-10) may be written as 

{l + vu'Jc2) 

d mu' v v.     d        mu' 
Z< 

rf'(i-«'7c2f cl     dt'{i-w2/c2f 

d mu' v c 

<*'{l-u'2/c2)V2    (l + v*Jc2) 

d        mu' d mu' 
dt 

■+ul 
'(l-"'7c2)1/2     Zdt'(l-u'2/c2f 

(2.4-11) 

Then on substituting (2.4-7) and its z equivalent in (2.4-11) and equating with (2.4-9) we 
obtain 

qfe+^trxB'l}: d mu'x 

^(\-u'2/c2) 
1/2 

(2.4-12) 

It follows from (2.4-7) and (2.4-12) that momentum in S' must be ascribed the value 

mü~'/[\-u'2/c2) if the Lorentz force formula is to be applied in that frame. Mass has 

the same value in all inertial frames of reference. 

We see from (2.4-4), (2.4-6), (2.4-9) and (2.4-11) that both electrical and mechanical 
forces as measured in S and S' are related by 

F =F X x X 

i vie2 I ' i     ' 
+ 7\ Tl\\u'yFy +uzFz (\ + vu'Jc2Y 

(2.4-13) 

F„= F> 
ß(\ + vu'x/c2) 

F-        F* 
ß(\ + vu'Jc2) 

(2.4-14) 



Sec 2.4] INTERFRAME TRANSFORMATIONS IN ELECTRODYNAMICS 33 

As is usual, the inverse relationships are obtained by interchange of primed and unprimed 
quantities and the reversal of the sign of v. 

It will be observed that the transformation formulae for the components of M (2.1-16) 
are formally identical with those for the components of electrical and mechanical force. 
It is shown in Appendix 1 that this applies also to the components of area. Then the 
establishment of the group property for one establishes it for the others. 

EXERCISES 

2.2        By differentiating the x component of (2.4-1) with respect to time, show that 

[(l-.Vcf2 
dux mur u du 

Fr- X 

(i-«2A2) 2/^2c2  dt m 

whence 
;_ a _ _l(i-«7c2)1/2 

acceleration = ] F -—(u ■ F)( 
c J m 

It will be observed that no simple meaning can be attached to the concept of 
'inertial mass' (where acceleration = force/inertial mass) since acceleration is dependent 
upon the direction of application of the force. 

[The terms 'rest mass' (mQ) and 'relativistic inertial mass' ^/(l-w2/^) ) have now 

dropped out of favour.] 

2.3 If the momentum transformation formula is derived independently of electrical 
considerations, and E and B are defined in any frame of reference by means of the 
Lorentz force formula (rather than through the agency of the retarded potentials), make 
use of the electrical forms of (2.4-13) and (2.4-14) to derive the transformations for E 

and B between different frames. 

[Set various component velocities to zero to develop component transformations, and 
reinsert these to confirm that the transformations hold in general.] 
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CHAPTER 3 

VELOCITY DEPENDENCE WITHIN A SINGLE FRAME OF REFERENCE 

3.1 General Considerations 

In the previous chapter we were concerned, inter alia, with the manner in which the 
density functions p, J, P and M change value when measured in different frames of 
reference. We were nowhere concerned with possible changes which would be observed 
in a given frame as a result of bulk movement of the source complex in that frame. The 
two cases are quite distinct. In the former we have a given source complex and two 
viewing platforms; in the latter, one platform and possibly two source configurations. 
We now address the second case. 

Consider the most general form of source system (comprising individual charges) in the 
aether frame, and let it be subject to electrical forces only, as expressed by the Lorentz 
formula. From this source system we generate a second system within the aether frame 
by an application of the Lorentz transformation; thus a charge q in the primary system 
having the co-ordinates x, y, z, t gives rise to a charge q' of equal magnitude having the 

co-ordinates ß{x-vt),y, z, ß(t-vx/c2y . 

Then when the path of q is given, the path of q' is defined. In this context v is simply an 
arbitrary constant2. 

Let O (x0 y0 z010) and O'(x'0 y'0 z'01'0) be positions and times of evaluation of the 

potentials in the two systems, where the space and time co-ordinates are related by the 
Lorentz transformation. If Q is the appropriately-retarded position of q for evaluation of 
its contribution to the potentials at O at time t0 and its co-ordinates are (x{ v1 zy t^) then 
tx = t0 -R/c where R = OQ. Since Q lies on the path of q, the corresponding point Q' 

Note that one system of axes and one set of synchronized clocks are employed for both 
the primary and secondary source systems. 
It will be observed that we have now applied the Lorentz transformation in three 
different ways: 
(1) as in the purely mathematical mapping procedure employed in F.A.P.T. Pt. 2 to 

establish the Maxwell-Lorentz equations for a moving medium. 
(2) as in the present instance, where the mapping procedure generates a new physical 

system. 
(3) as in CH. 2 where the transformation relates measurements made on a single source 

system in two frames of reference. 
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lies on the path of q' and has the co-ordinates ß(xx - vtx) yx zx ß[tx - vxjc2). Given 

this, it has been shown in "Field Analysis and Potential Theory, Part 2" that Q' is the 
appropriately-retarded position of q' for evaluation of its contribution to the potentials at 
O' at time t'0. It has also been shown that, as a consequence, the associated field 
relationships at O and O' are given by 

Ex - Ex E'y = ß 
f       v    ^ 

V y    c    j 
E'z = ß 

r       v     ^ 
Ez+~By 

V C    y J 
(3.1-1) 

B'x=Bx B'=ß 
f V      ^ 
By+-Ez 

\ y    c     j 
B>=ß\Bz--Eyj (3.1-2) 

These relationships apply to all paired sources in turn and, by superposition, to complete 
primary and secondary source systems. 

Suppose now that O and O' are identified with the locations of corresponding charges 
q0 and q'0 (=q0). Since q0 is subject to Lorentz forces only, we have 

j -p    1 /_   -pr\ I     d mu ?oi£+_(„xfi)|=___ (3.1-3) 

where m is the mass of q0 and u is its velocity. 

Then on applying (3.1-1), (3.1-2) and the mathematical treatment of Sec. 2.4 to the 
present situation we find that (3.1-3) leads to 

mu 
q'iE' + -(ü'xB')\ = — (3.1-4) 

dt'{\-u'2/c2y 

We see that the Lorentz force which acts upon q'0 at time t'0 is just that which is required 
to maintain its rate of change of momentum, when its motion is defined by that of its 
parent charge q0 at time /0 via the agency of the Lorentz transformation. 

Since the same argument holds for all paired charges, it follows that the secondary 
system represents a possible self-contained space-time configuration subject only to 
Lorentz forces, and that we may generate as many secondary systems as we please from 
a given primary system by choice of v. 

It is clear that the viability of the secondary configuration will not be affected if shifted as 
a whole in space and time, so that we may equally well transform the primary system 
according to 

x,y,z,t->x\y\z\t° (3.1-5) 

where 

x° = ß(x-vt) + X    y°=y+Y    z°=z + Z    f° = ß(t-vx/c2) + T 
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and X, Y, Z, T are constants having the same values for all source elements. 

We now restrict considerations to source configurations which exhibit an identifiable 
bulk velocity, e.g. a moving medium comprising a doublet/whirl complex in which the 
doublet and whirl centres translate together. If conduction currents are present they 
should be confined to paths which share the doublet/whirl velocity. It will be further 
supposed that the associated density functions are invariant or periodic in time. 

Let the bulk velocity of the primary system be w and that of the secondary system ü , 

so that 
< =(«,-v)/(l-v«x/c2)      u>y=uy/ß(\-vujc2)      ut=uz/ß(l-vujc2) (3.1-6) 

Then provided that the configuration of the secondary system is a unique function of its 
velocity as a whole, we are led to conclude that if the primary system is forced to alter its 
velocity in the aether frame from w to M °, it will rearrange its space/time3 geometry in 
accordance with (3.1-5). Under these conditions the x component of spacing between 

doublet and whirl centres is reduced ß(l-vux/c2) times, while the period of 

time-dependent processes is increased by the same factor. In particular, for a system 
initially at rest in the aether frame and subsequently in motion with speed v, there will be 
a compression of ß times in the direction of motion and an equal increase in cyclic 
period. 

It will be observed that in arriving at these conclusions the Fitzgerald-Larmor 
contractions have not been invoked4. Whereas such contractions have been pivotal in 
the development of the Lorentz transformations, as applied to interframe measurement, 
they have played no part in the present analysis, where the Lorentz transformations have 
been arbitrarily chosen to relate the primary and secondary source configurations. Thus 
the conclusions reached lend credence to the Fitzgerald-Larmor proposals, insofar as 
material systems may be considered to derive from charge complexes subject to Lorentz 
forces. 

Suppose now that the secondary configuration in the aether frame S is viewed in a frame 
S' which moves with velocity -/'v relative to S. Then 

x'=ß{x°+vt°)        / = /        z' = z°        t'=ß(t°+vx*/c2)      (3.1-7) 

which, on substitution from (3.1-5), yields5 

x' = x+ß(X+vT)     y' = y + Y    z' = z + Z     t'=t+ ß(T+vX/c2)    (3.1-8) 

5 

Here we employ the term 'space/time' in lieu of'spatial configuration as a function of 
time'. 
On the other hand, the basic expression for momentum within the aether frame has been 
an essential part of the analysis. 
If the origins of co-ordinates in S and S' do not coincide at zero time in each frame, 
additional constants will appear in (3.1-7) and (3.1-8). 
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Hence for this particular value of velocity relative to S, the space/time sequences of 
individual sources, as measured by synchronized clocks in S', will be identical with those 
measured in S but with different space and time origins - a result to be expected since we 
have, in effect, applied a forward and reverse transformation to the source complex. 
Likewise, the bulk velocities in the two frames will be equal. 

It follows that if the bulk velocity of a given, self-contained, time-invariant or periodic 
source system has the same measured value on different occasions in any two inertial 
frames of reference, the differential space/time behaviour of the two configurations will 
be measured as identical. Correspondingly, the associated electromagnetic analyses must 
agree in all respects; this follows automatically when the retardation constant is 
identified with the measured speed of light in each frame, viz. c. 

EXERCISES 

3.1 A horizontal platform moves with velocity Iv in the aether frame. A star is 
observed from a point on the x axis of the platform to lie in the xz plane and to have an 
angle of elevation <f> (as measured from the positive x direction), while the 
corresponding angle, as measured at a stationary, coincident point in the aether frame, 

Make use of Fig. 1.3 and equations (l.l-10a) and (1.1-3), with 6' replaced by <j>, to 
derive the aberration relationships 

cos6-vie ,     cos6n+v/c 
cos<t>o=-, -rr cos^=-         ' 

\-vcos<pjc l + vcos^0/c 

Show that these expressions continue to apply when the aetherial frame is replaced by 
any inertial frame, and iv is the platform velocity relative to it. 

3.2 Derive the above relationships by utilising the appropriate direction - cosine 
transformation developed in Sec.2.2, and employ the considerations of Sec.3.1 to show 
that the measured value of aberration angle is unchanged when the phase velocity of light 
within the viewing telescope is altered, e.g. by filling it with water (Airy's experiment). 
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3.2 Modification of the Constitutive Equations 

The constitutive equations provide a link between the density functions J,P andM, and 
the potential derivatives EandB, and so permit of a nexus between a purely 
mathematical development and a physical theory7. 

In a Lorentzian context the relationships of primary interest for a medium at rest are 
those which connect Jand E,Pand E, and Mand B . 

The auxiliary point functions Dand H are defined by 

D = E + 4xP H = B-4TTM (3.2-1) 

For an isotropic medium at rest, we write 

D = KE B = juH (3.2-2) 

where K is known as the permittivity (dielectric constant) and ju the permeability9. 

Then 

P = ^Z1E = KE M=^B = kJ (3-2-3) 
An 47TJU 

m 

where ke and fjkm are the electric and magnetic susceptibilities. 

We have also 

J = cxE (3.2-4) 

where <J represents conductivity. 

In view of the conclusions reached in the previous section we need consider only those 
modifications of the constitutive equations which accompany movement in the aether 
frame, since the same electrical parameters are measured at a given point of a particular 
source complex in all inertial frames when exhibiting the same bulk velocity (or when at 
rest). 

Let the source system, initially at rest (as indicated by the superscript 0), begin to move 
with uniform velocity w in the aether frame. Suppose that ancillary axes X Y Z are set 
up such that « is directed along the positive X axis. Then the source parameters will be 
modified by the motion in the manner prescribed by the Lorentz transformation, where v 
is replaced by -u. 

See p. 29 above, and Preface to F. APT. Pt. 1. 
That such linkage exists must be demonstrated experimentally. 
In anisotropic media D is not collinear with E nor B with H, so that K and /J, cannot 
be represented by simple constants. These complications do not concern us here. 
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Thus, from (2.1-17) 

[Sec. 3.2 

p _ p<J      p _ 

2/„2V/H   Y      C      ZJ (l-"Vc2) MA2) \/2[rZ + C
MY j (3.2-5) 

From (2.1-15) 

MX = MX 
1/2 

MY =(\-u2/c2)y M°y Mz={\-u2/c2f' M\     (3.2-6) 

From (2.1-2) 

x ~ i      i / i\i/2 v-Asr    Pu)     Jy ~ Jy     Jz~ Jz (l-u2/c2f 

{l-u2/c2) 
1/2 (p-uJx/c2) 

(3.2-7) 

From (2.2-13) 

^X ~ ^X        -C-y - 
{l-u2/c2) 

Ey   —  By i/2rr c~zj (iJ/c2f[Ez + UcBY; (3.2-8) 

and 

D0 _ D DO Bx - Bx      BY 
(l-u2/c2) 

1/2 [BY + c
EZj ^J/cf2^"^ (3.2-9) 

Then by substitution of the components of P   = keE   and M  = kmB   in (3.2-5) and 
substitution of (3.2-8) and (3.2-9) in the result, we obtain, to a first order in u/c, 

Px=keEx     PY*keEY-(ke+km)-Bz     Pz*keEz+(ke + km)-BY      (3.2-10) 
c 

f0 _ u    DO Substitution of the components of M  = kmB   in (3.2-6) and substitution of (3.2-9) in 
the result yields 

Then 

MX = kmBX        MY = km By+-E7 MZ=km By Ey 
V        c   ' J 

(3.2-11) 

?-a+fe + 0:("^)«^ + ^^^)        (3-2-12) 

M=km\B-l-(**E))=   ^ 

4K 

l 
B—(üXE) 

V      c 
(3.2-13) 
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On writing J° = <jE° in (3.2-7) and substituting from (3.2-8) we get to a first order in 
ujc 

Jx « uEx + pu    JY « a EY —Bz Jz*o EZ+-By 
V        c   Y j 

(3.2-14) 

whence J « pu + a E + -(UXB) 
V       c 

(3.2-15) 

It will be seen that the term pu represents the convection current density. The 
conduction current component, which is clearly of greater significance when dealing with 
closed circuits, is given by 

Jconduc.*°\E + -(UxB) (3.2-16) 
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CHAPTER 4 

A CRITIQUE OF CONVENTIONAL RELATIVISTIC ELECTROMAGNETICS 

Minkowski's relativistic treatment of electromagnetics, as presented in current 
textbooks, begins with Maxwell's equations for a material medium at rest in some 
reference frame E, viz. 

div D = Anp (4.1) 

curl E = -——- 
c dt 

(4.2) 

div B = 0 

-.    An -   1 3D 
curlH  =—J +—— 

c        c dt 

(4.3) 

(4.4) 

The derivative transformations, corresponding to measurement in a frame E', moving 
with velocity iv relative to E, are 

A-gll-   -HA!     A_JL    A_A     i_= JA_VJL} (4.5) 
<?x    P\dx'   c2 dt'\     dy    dy'     dz    dz'     dt    y [d?      dx'\ 

On applying (4.5) to the cartesian components of (4.2) and to (4.3) we get 

dE,    dEy 

dy'     dz' 

1 „\dBr      dBY 

c    \ d? "V dx' 
'_Z_        Z.__IoJ"^ -■""X (4.6) 

 ^_ a 
dz'    dx'H V       c   y J cdt'H 

dx'P 
V 

Ey —Bz 
v y    c    J 

^   dEx_^_\_d_ 

dy' cd? 

f 

C      J 

r 
Bz 

V 

v     "1 —Ey 
c   y) 

(4.7) 

(4.8) 

H* is written with a starred superscript to distinguish it from the Lorentzian H. The 
two are unequal in a frame of reference in which the medium is in motion. [As a 
consequence, the associated constitutive equations assume different forms.] 
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dBr     v dBr      dBv    dB, 

dx'    c1 dt'\     ay'     3z' 
= 0 (4.9) 

Elimination of— and —- in turn from (4.6) and (4.9) yields 

dy'H\ z    c   yJ   dz'H 

a   (     v   ^ 
\Ey—B 
V. y   c    j 

\aB^ 
c ar (4.10) 

—- + B ax'   ayH 
r v 
By+-E 

v y    c    j ♦£> 
v 

V C    yJ (4.11) 

It is seen from (4.7), (4.8), (4.10) and (4.11) that (4.2) and (4.3) assume their primed 
forms when the following substitutions are made: 

Ex - Ex E'=ß 
f        v    > 

\y    c    j 
E'z=ß 

f       v    ^ 

V C    y J 
(4.12) 

B'x =BX        B'=ß By+-Ez 
.yczJ 

B'z=ß 
V c    y J 

(4.13) 

In like manner, application of (4.5) to the components of (4.4) and to (4.1) gives rise to 
the primed forms of (4.1) and (4.4), provided that 

D'X=DX      D'=ß Dy—K v y    c     j 
D'z = ß DZ+-H; 

V c     y J (4.14) 

K = K   H; = ß\H;+-Dt)   K = ßWz--D ' 
V   y ' c~V     "z     T'z    c 

(4.15) 

J's = ß(js-f»)   J'=Jy   J'Z = JZ   P'=ß\p-^J: 
c2   XJ (4.16) 

Textbooks now advance the following argument: "According to the Principle of 
Relativity, the laws of physics have the same form in all inertial frames of reference. 
Maxwell's equations are Lorentz-covariant between I and I', given (4.12) to (4.16), 
hence they must hold in this form in I'." 

Passing over the question as to whether Maxwell's equations, in isolation, represent laws 
of physics2, we see that the argument hinges upon the Principle of Relativity; without it, 
Lorentz-covariance would lose its significance. 

This approach is quite different to that of Sec. 2.3, where Maxwell's equations for a 
medium at rest or in motion within a single frame of reference (aether) were known 

Footnote 7, p. 39. 
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abinitio, and where the interframe transformations were accomplished by_utilising 
transformations previously deduced for both the density functions and E and B on the 
basis of the model; the Principle of Relativity was nowhere invoked. Nevertheless, the 
results are in conformity with it. In particular, the interframe velocity v vanishes and the 
velocity w of the material medium (i.e. the doublet/whirl complex) appears in the same 
mathematical context in each frame, as required. 

In the Minkowski scheme P and M* are defined by 

P = (D-E)/4TT and M* = (ß -H*)JAn (4.17) 

while P' and Mv are defined by the primed expressions. 

Then substitution in (4.12) to (4.15) yields 

FX=PX    F = ß Py+-M*z 
v y    c      J 

/>; = /? PZ—M; 
V        c     y 

(4.18) 

Mt = K     M*' = ß 
r v    ^ 
M;—P 

.    y    c    J 
Mt = ß 

f v    ^ 
M*z+-Py 

v c   y J 
(4.19) 

Substitution of (4.17) and its primed equivalent in (4.4) and its primed equivalent leads 
to the Minkowski relationships 

and 

_    An-   \dE    AndP -. 
curlB = —J+—— + — + 47TCurlM 

c        c at      c   ot 

-     An -    1 dE'    An dP'    A        „ -t 
curl'B' = —J' + —z— + —~ + 4ncurl'M 

c c dt'      c   dt' 

in £ 

inE' 

(4.20) 

(4.21) 

while the corresponding Lorentzian forms are 

An -   \dE    An dP 

and 

citrlB = -1—J+- + +AncurlM          in E (where u = 0) (4 22) 
c        c dt      c   dt v      ' 

-    An-    \dE'   An dP'    A        „ —    An        ,-    , Mv 
curl'B' = —J'+——+ —- + Ancurl'M'+—curl\P'x{-iv)) (4.23) 

c        c dt'      c   dt'                          c v      ' 

Then we may identify M* with MinE, where the medium is at rest, and M*with 

M' + -(P'x(-Jv))   in   E'   where  the   medium  velocity  is   -Jv,   since  the same 

transformations hold for E,B,J and P in each scheme. Relativists claim that M* 
represents the observed value of whirl moment density in E' on the grounds that a 
doublet of moment p, when translating with velocity ü, gives rise to a whirl moment m, 

where m = -(pxü). This is clearly incorrect, as has been pointed our elsewhere3. Not 

F.AP.T. Pt. 2, Sec. 1.9. 
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only are the associated vector potentials incompatible, but, in the case of a normally- 
translating doublet, the radial B field of the whirl along its axis is twice that of the 
doublet, while the field of the whirl along the line of the doublet is half that of the 
doublet (Ex. 4.2). Attempts to interpret M* on the basis of an electronic model are 
doomed to failure; within this context M* remains a hybrid which permits of an illusion 
of Lorentz-covariance between E and Z' when the particular choice, U = 0 in Z, requires 
the suppression of the medium velocity factor in (4.21). 

The Minkowski treatment poses a further problem which is most clearly demonstrated in 
connection with the constitutive equations. These are written down for a medium at rest 
in Z and developed for a medium moving in Z'. But we are concerned, not with the 
development of a constitutive formula for a moving medium in terms of its stationary 
parameter in a different reference frame, but in terms of its stationary parameter in the 
same frame. While it is always tacitly assumed that the same quantitative relationship 
holds for a given medium, when stationary in any inertial frame, it is not obvious that the 
Principle of Relativity can be extended this far. In contrast, it has been shown in Sec. 3.1 
that not only do the same constitutive equations apply at a given source element in 
different frames of reference for a given medium velocity, but also that, in these 
circumstances, the measured values of the density functions and of E and B will be 
identical. 

Relativist literature is replete with asymmetrical analyses - an inevitable concomitant of a 
choice of reference frame in which some component of the system under consideration is 
at rest. Such analyses are presumably responsible for the mistaken belief that only 
relative velocities are significant in physical interactions. This has already been remarked 
upon in connection with the rates of moving clocks and the doppler formulae; it 
continues to be pertinent in the field of charge/charge and whirl/charge interaction. 

EXERCISES 

4.1 Einstein, in speaking of a conducting circuit and a magnet, claims that "the 
observable phenomenon here depends only on the relative motion of the conductor and 
the magnet." 

Suppose that the situation is simplified by reducing the magnet to a single whirl which is 
located at the point P in the xy plane while the conducting circuit is replaced by a point 
charge q at the origin of co-ordinates (Fig. 4.1). When at rest the moment of the whirl is 
km0 and the polarisation is zero. 

Fig. 4.1 
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If the whirl now translates with velocity lux and the charge with velocity iu2 show that 

the force acting upon the charge is given by 

_ _,    ^ji^L 
cr   (l -u\ sin2 die2) 

having first established that the presence of the moving charge does not affect the 
configuration adopted by the moving whirl. 

It will be seen that the force cannot be expressed in terms of relative velocity, even when 
the movement is collinear, except for the case ux = u2 when the force reduces to zero. 

4.2 A doublet of moment jp translates in the xy plane with velocity iu (Fig. 4.2). 
The points P and Q are located in the xy plane as shown, and each is at a distance r from 

the doublet. 

JP 
Q 

-^> iu 

Fig. 4.2 

Showthat (Bz)p =^,_   *     V2       and       (ßz)Q =^-(l-u2/c2) 

_    w 
Suppose now that the doublet is replaced by an unpolarised whirl of moment px—. 

Show that in this case 

(B)   ^-^fl      and      (Bz)=^(l + u2/c2) 
Kz,p    cr3   i_MYc2) Q    cr 

Observe that for small values of u/c the replacement results in (ßz)p being reduced to 

half its former value while {BZ)   is reversed in sign. 



48 FIELD ANALYSIS AND POTENTIAL THEORY 



49 

APPENDICES 

A.l Transformation of Area 

Let an elementary area be defined by the vectors PQ and PR. 

P(x, yv z) 

Q(*2 yi Z
T)     PQ = i(x2 -*i)+j{y2 -yi)+k(z2 ~

zi) 

PR = 7(x3 -xt) + J(^3 -^) + ^(z3 -z,) 

The vector area of the parallelogram AS is given by PQ x PR i.e. 

^ = i{(y2 -y{){z3 - zy) -(z2 - z^y, -yx)} 

+ ]{{Z2 ~ Zl)(*3 - *l) ~ (X2 ~ *l)(Z3 - *l)} 

+ k{{x2 - Xl)(y3 - yi) -{y2 - ^)(x3 - x,)} 

If the elementary area translates in the aether frame with velocity components ux, uy,uz 

then, in a frame moving with velocity z'v relative to the aether, we have1 

—»    _     (x2 -x{) P'Q' = /—,U f^r + j] 
ß(l-vujc2) 

vu„ (x2 -x{) 

+k 
VM, 

22-Z,+- 

c    (l-vujc ) 

(*2"*l) 

c2 (l-v^/c2)j 

—»       -       (*3~Xl) 
P'R' = i—r-^ T7Y + 71 

vw„ 

+* 
Vtt, 

*3-z< + 

>,3-3;i+-T 

(*3~*l) 

(x3 -xt) 

(l-^/c2)] 

1    c2 (l-v«x/c2)J 

F.A.P.T. Pt. 2, Sec. 1.7 
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Following vector multiplication and cancellation of terms, we obtain 

[Sec. A.2 

AS' = 1 

or 

(j>2 - ^l)(^3 - *l) - (*2 - ZlXtt - yi) 

vu. (x2 -x,)(z3 -z,)-(x3 -x,)(z2 -z,) 

+j\ 

+ k 

(l-v^/c2) 

c2 j (l-vujc2) 

(*3 -*l)(*2 -Zl) ~(*2 -*l)(*3 ~Z\) 

ß(\-vujc2) 

(x2-xl)(y3 -yl)-(y2 -^)(x3 -*,) 

AS'= 7 

/?(l-^/c2) 

v/c2 

(l-vwjc 

AS,, 

pr(w^AS^+wzASz) 

(A. 1-1) 

+ J- + k 
AS, 

ß[\-vujc2)       ß(\-vujc2) 

from which we may derive the inverse relationship 

AS = 7 

+ J 

v c 

(l + vu'Jc2) 

AS' 
+ k- 

{u'yAS'y+u'zAS'z) 

AS: 

(A. 1-2) 

ß(l + vu'Jc2)       ß(l + vu'Jc2) 

If all  elements of a surface translate with the same velocity, we may replace AS by S 
and ASj by Sx, etc. 

A.2 Group Property of Lorentz Transformations for E, B, p, J, M and P 

Suppose that reference frames S' and S" translate with velocities 7v2 and 7v2 with 
respect to the aether frame S. 

Let      /*,=(l-v,7c!r        A=(l-»J/«'r        A, = (l-v,ycI)-'/2(A>l) 

where v12 is the velocity of S" as measured in S'. 



Sec A.2] Group Property of Lorentz Transformations for E, B, p, J , M and P 51 

Expansion of v12 yields 

Ä2 = AiMl-Wc2) (A.2-2) 

The following relationships, which will be required later, are readily confirmed. 

(l + vlW;/c2) = l/A2(l-v1«;c/c2) (A.2-3) 

where     u'x = (ux - vt)/(l - v^Jc2) 

/, ,/2x    (l-vA/c2) 1 (A.2-4) 

(l - v2ux/c2)(\ + vlM;/c2) = (l - Wc2)(l - v12«;/c2) (A.2-5) 

(1) Transformation of E and B 

Since E'x = Ex and E"x = Ex, E"x = E'x. Similarly B"x = B'x. 

Of the remaining relationships we will consider only the transformation of Ey, since that 

of the other E and B components follow in a similar fashion. 

Now 

E'y = ft{Ey-^B') B> = 0^ V c    y J 

E; = ß2\Ey-^BZj B" = ß Bz -     E 
V c    y j 

On elimination of Ey from (a), the left hand equations, and (b), the upper equations, we 

obtain in turn 

E'y = ßiE'ylßx-(v2-v^ß2Bjc 

and    Bz = ß K+-E' 
v        c   >j 

(A.2-6) 

(A.2-7) 

Then substitution of (A.2-7) in (A.2-6) yields 

£; = A/?2(I-WC2) 
?, (V2~Vl)A    T» B' 

(l-Vlv2/c2)   zj \=ßn E'y-—B' 
\ y     c      j 

(A.2-8) 

Thus the transformation between S' and S" takes the same form as that between 
S and S'. 
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(2) Transformation of p and J 

Since J'y = Jy and J"y = Jy, J"y=J'y. Similarly J"z = J'z. 

Also 
J'x = ß,(jx - pvx) p' = ßx{p-JxvJc2) 

rx = ß2{jx-pv2)      P"=ß2{p-jxvjc2) 

On elimination of Jx from (a), the left hand equations, and (b), the upper equations, we 
obtain in turn 

Jl = ßiJxlßx-(v2-Vx)ßiP (A.2-9) 

and   p=ßl(p' + vlJ'x/c2) (A.2-10) 

Then substitution of (A.2-10) in (A.2-9) yields 

J"x = ßn(j'x-P\2) (A.2-11) 

In like manner, elimination of p from the upper and the right hand equations in turn, and 
subsequent combination, yields 

P' = ßi2(p'-VnJ'Jc2) (A.2-12) 

(3) Transformation of M 

We have M'X = MX- ,    Vl/C-    . (uyMy +uzMz) 

and M"x = Mx -,    Vl,°     AuyMy + uzMz) 

(v2 -v,)(uvMv +uzMz) 
whence M^M'X-  2)

2     l,)y   y > (A.2-13) 
c (1-Wc ){\-v2uxlcl) 

But from (2.1-15), M'y = My/ß^l-v^/c2) etc., so that (A.2-13) may be brought 
into the form 

(v2-vx)(u'My+uzM'z) 
x    c2(l-vA/c2)(l + vX/c2) 
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Then from (A.2-5) 

{v2-v){u'yM'y + u'zM'z) 

or 

^^(l-Wc'lfl-Wc2) 

M-M'-(d&)(^+«) 
We also have 

M'y 

M„ 

A(l-v,«,/c2) 

Then from (A.2-2) and (A.2-4) 

A(i-v^A2) 

and        M" 
M„ 

/92(l-v2Mx/c2) 

M' 
Ml = M\ 

"~    " /?2(l-Wc2)" ßn{\-WJc2) 

Similarly for Mz 

(A.2-14) 

(A.2-15) 

(4) Transformation of P 

Since P; = PX and PX'=PX,PX" = PX 

Also 

and 
P'y = A(l - ^Jc2)Py + ßwy Px/c2 + ßxvx Mjc 

P*y = ßl(l- v2"Jc2)Py + ßlWy Pj <? + ßi?% MzlC 

whence, by elimination of Py, 

= ^(l-vA/c2b    _ pjc2 _ ß^ Mjcj + ß^ pjc2 + ß^ Mjc 

or 

/?2(i-v2»,A2), 

'"A(l-vA/c2) 

v,(ii;fj/c2 + M;/c) 

(l + v^/c2) 
\^H2 2V /  x/ 4^ (A.2-16) 

A(I+VXA
2
) 

The coefficient of P'y may be simplified by means of (A.2-4) and (A.2-2). We have 
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The coefficient of PL reduces to 

A^-nK/c2 

A(l+Wc2)(l-Wc2) 

= A£2(v2 -ViUy/c2 from(A.2-3) 

= A&1-We*  V /2^ 

= /?i2v12 w^/c2 from (A.2 - 2) 

By the same procedure, the coefficient of A^ is ßn vn/c. 

Hence 

^ = A2(l - W^ + ßuvni/y P;/c2 + ßnvn M'Jc (A.2-17) 

Similarly 

P'= A2(i - Wca)/j + A2V12< P;A
2
 - ßnvn M'y/c     (A.2-18) 
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